Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine

نویسندگان

  • Ying Wang
  • Jianxun Mi
  • Ka Lu
  • Yanxin Lu
  • KeWei Wang
  • Randall Lee Rasmusson
چکیده

Mexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Nav1.5 and Nav1.7 channels stably expressed in HEK293 cells and compared their use-dependent block in response to mexiletine and lidocaine using whole-cell patch clamp recordings. While the voltage-dependent activation of Nav1.5 or Nav1.7 was not affected by mexiletine and lidocaine, the steady-state fast and slow inactivation of Nav1.5 and Nav1.7 were significantly shifted to hyperpolarized direction by either mexiletine or lidocaine in dose-dependent manner. Both mexiletine and lidocaine enhanced the slow component of closed-state inactivation, with mexiletine exerting stronger inhibition on either Nav1.5 or Nav1.7. The recovery from inactivation of Nav1.5 or Nav1.7 was significantly prolonged by mexiletine compared to lidocaine. Furthermore, mexiletine displayed a pronounced and prominent use-dependent inhibition of Nav1.5 than lidocaine, but not Nav1.7 channels. Taken together, our findings demonstrate differential responses to blockade by mexiletine and lidocaine that preferentially affect the gating of Nav1.5, as compared to Nav1.7; and mexiletine exhibits stronger use-dependent block of Nav1.5. The differential gating properties of Nav1.5 and Nav1.7 in response to mexiletine and lidocaine may help explain the drug effectiveness and advance in new designs of safe and specific sodium channel blockers for treatment of cardiac arrhythmia or pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker

Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...

متن کامل

Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker

Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...

متن کامل

Mexiletine as a treatment for primary erythromelalgia: normalization of biophysical properties of mutant L858F NaV1.7 sodium channels

BACKGROUND AND PURPOSE The non-selective sodium channel inhibitor mexiletine has been found to be effective in several animal models of chronic pain and has become popular in the clinical setting as an orally available alternative to lidocaine. It remains unclear why patients with monogenic pain disorders secondary to gain-of-function SCN9a mutations benefit from a low systemic concentration of...

متن کامل

Unexpected mexiletine responses of a mutant cardiac Na+ channel implicate the selectivity filter as a structural determinant of antiarrhythmic drug access.

Gating properties of Na(+) channels are the critical determinants for the state-dependent block by class I antiarrhythmic drugs; however, recent site-directed mutagenesis studies have shown that the Na(+) channel selectivity filter region controls drug access to and dissociation from the binding site. To validate these observations, we have exploited a naturally occurring cardiac Na(+) channel ...

متن کامل

Pharmacogenetics and anti-arrhythmic drug therapy: a theoretical investigation.

Pharmacological management of cardiac arrhythmias has been a long and widely sought goal. One of the difficulties in treating arrhythmia stems, in part, from incomplete understanding of the mechanisms of drug block and how intrinsic properties of channel gating affect drug access, binding affinity, and unblock. In the last decade, a plethora of genetic information has revealed that genetics may...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015